Prime avoidance

The (Prime avoidance) Let J, I_{1}, \ldots, I_{n} be ideals in R. Suppose $J \subseteq \bigcup_{j} I_{j}$. If R contains an infinite field or if at most two of the I_{j} are not prime, then J is contained in some I_{j}.
(If R is graded, J is gen. by homogeneous elements of degree >0, and all the I_{j} are prime, then it's enough to assume the homogeneous ells of J are in $\cup I_{j}$)

Note: If I is not contained in any of a finite number of primes, the theorem says there is some $x \in I$ that "avoids" all the primes, hence "prime avoidance."

Pf of theorem: First suppose R contains an infinite field. Then J is a k-vector space, $s o$ if it's contained in the union of finitely many subspaces it must be contained in one of them.

Now, if at most two I_{j} are not prime, we do induction on u. If $n=1$, it's obvious.

If J is in any smaller union of the I_{j}, we're done by induction. Thus, assume it's in no smaller union, so we can find, for each $i, \quad x_{i} \in J$ s.t. $x_{i} \in I_{i}$ but

$$
x_{i} \notin I_{j}, j \neq i
$$

If $n=2$, then $x_{1}+x_{2}$ is not in I_{1} or I_{2}, which is a contradiction.

If $n>2$, assume I_{1} is prime. Then $x_{1}+\underbrace{x_{2} x_{3} \ldots x_{n}}_{\text {not in } I_{1}}$ is not in any I_{j}, again a contradiction.

This along with the previous theorem implies the following:

Cor: R Noetherian, $M \neq 0$ a finitely generated R-module. Let $I \subseteq R$ be an ideal. Either I contains a nonzerodivisor on M or I annihilates an element of M.

Pf: If I $\notin \bigcup_{P \in A_{s s M}} P$, then I contains a nonzevodivisor on M. Otherwise $I \subset P=\operatorname{Ann}(x)$, some $x \in M$.

Now we work on the proof of the theorem in the previous section. First we show the following:

Prop: R a ring, $M \neq 0$ an R-module. If $I \subset R$ is maxi among ideals of R that are annihilators of elements of M, then I is prime. In particular, if R is Noetherian, Ass $M \neq \phi$.

Pf: Let $a, b \in R$ s.t. $a b \in I$. Let $I=\operatorname{ann}(x)$.
Suppose $b \notin I$. Then $b x \neq 0$, but $a b x=0$.
$\Rightarrow(I, a) \subseteq$ an $(b x)$. By maximality, $a \in I$, so I is prime.

Note that this immediately proves part b.) of the theorem from the previous section, which says

If R is Noetherian, $\bigcup_{P \in A s s M} P=\{$ zerodivisors on $M\} \cup\{0\}$

This also makes it easier to check whether or not elements of a module M are O. Recall that we showed previously that $x \in M=0 \Leftrightarrow x \mapsto 0$ in M_{m} for every maxi (or just prime) ideal $m \subseteq R$.

But if R is Noetherian, we can restrict our attention to associated primes. More precisely:

Cor: Let M be an R-module, R Noeturvian. If $x \in M$, then $x=0 \Longleftrightarrow$ the image of x is 0 in each M_{p} for each of the maximal associated primes P of M.

Pf: \Rightarrow is already done.

Suppose $x \neq 0$. Then since R is Noetherian \exists a prime $P \in$ Ass M that is maxi among annihilators of els containing Ann x. Thus, $x / 1 \neq 0$ in M_{p}.

We cam now observe how taking associated primes acts in short exact sequences.

Lemma: Let R be Noetherian. If

$$
ט \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

is a short exact sequence of R-modules, then

$$
\text { Ass } M^{\prime} \subseteq A s s M \subseteq\left(A s s M^{\prime}\right) \cup\left(A s s M^{\prime \prime}\right)
$$

Pf: The first containment is clear.

For the second, let $P \in A s s M \backslash A s s M^{\prime}$. If $P=\operatorname{ann} x$, then $R_{x} \cong R / P$.

For ${ }^{0 x} \bar{y} \in R / P, \quad a \bar{y}=0 \Leftrightarrow a \in P$, since P is prime. Thus, every nonzew element of R_{x} also has annihilator P.
$\Rightarrow R_{x} \cap M^{\prime}=0 \Rightarrow R_{x}$ is isomorphic to its image in $M^{\prime \prime} \Rightarrow P \in A s s M^{\prime \prime}$.

To finish the proofs of part a.) of the Theorem in the previous section, we now just need the following:

Prop: If R is Noethevian and M is a finitely generated R-module, then M has filtration

$$
0=M_{0} \subseteq M_{1} \subseteq \ldots \subseteq M_{n}=M
$$

$w /$ each $M_{i+1} / M_{i} \cong R / P_{i}$ for some prime ideal P_{i}.

Pf: Since R is Noetherian, if $M \neq 0$, Ass M is nonempty. Let $P_{1} \in A s s M$, so there's a submodule $M_{1} \cong R / P_{1}$. Repeating this $w / M / M_{1}$, we get M_{2}. This process terminates since M is Noeturian.D

We also heed the following lemma, which essentially says that taking associated primes commutes w/ localization:
lemma: If R is Noetherian and M an R-module, we have

$$
\operatorname{Ass}\left(U^{-1} M\right)=\left\{Q U^{-1} R \mid Q \in \operatorname{Ass} M \text { and } Q \cap U=\varnothing\right\}
$$

Pf: Suppose $Q \in \operatorname{Ass} M$ and $Q \cap U=\varnothing$. Then $Q=\operatorname{Ann}(x)$ for some $x \in M$.

Suppose $\frac{a}{u} x=0$ in $U^{-1} M$. Then $(v a) x=0$ for $v \in U$. $\Rightarrow v a \in Q$. But $v \notin Q$, so $a \in Q$.

Thus, $Q U^{-1} R \in \operatorname{Ass}\left(U^{-1} M\right)$.
Conversely, suppose $P \in A s s\left(U^{-1} \mu\right)$. Then $P=Q\left(U^{-1} R\right)$ for some $Q \subseteq R$ prime not meeting U.

Say $P=A n n_{u^{-1} R}\left(\frac{x}{u}\right)=\operatorname{Ann} u_{u^{-1} R}(x)$.

Then for each $q \in Q, \quad \frac{q x}{1}=0$, so there is $u_{q} \in U$ sit. $u_{q} q^{x}=0$.

Since R is Noetherian, Q is finitely generated, say $Q=\left(q_{1}, \ldots, q_{n}\right)$. Set $u=u_{q_{1}} u_{q_{2}} \ldots u_{q_{n}}$.

Then $\forall q \in Q, q(u x)=0$. Thus, $Q \subseteq \operatorname{Ann}_{R}(u x)$.

So we have:

$$
Q \subseteq \operatorname{Ann}_{R}(u x) \subseteq \operatorname{Ann}_{u^{-1} R}(u x) \cap R \subseteq A n n_{u^{-1} R}(x) \cap R=P \cap R=Q
$$

Thus, $Q=\operatorname{Ann}_{R}(u x)$, so $Q \in A s_{s_{R}} M$.

Now we conclude the proof of the theorem from last section. Recall part a.) of the theorem, again under the assumption that R is Noetherian and $M \neq O$ is f.g.:
a.) Ass is finite and nonempty, each containing ann (M). It includes all primes minimal among those containing $a n n M$.

Pf: For the finiteness statement, we give a filtration $0=M_{0} \subseteq \ldots \subseteq M_{n}=M$, where $M_{i+1} / M_{i} \cong R / P_{i}, P_{i}$ prime.

We prove by induction on n. For $n=1, M \cong R / P_{i}$ So $\forall{ }_{0^{x}}^{x \in M,} \quad a x=0 \Longleftrightarrow a \in P_{i}$, so $\quad A_{s s_{R}} M=\left\{P_{i}\right\}$.

Now we just heed to show that if P is a prime ideal minimal over $A n_{n} M, P \in A s s M$.

By the lemma, $A_{s s_{R_{p}}} M_{p}=\left\{Q R_{p} \mid Q \in A s s M\right.$ and $\left.Q \subseteq P\right\}$

But $P R_{p}$ is the only prime in R_{p} containing Ann and since $A_{s s_{R_{p}}} M_{p} \neq \varnothing, \quad P \in A_{s s} M$. D

