Prime avoidance

The (Prime avoidance) let J, $I_{1,...,}$ In be ideals in R. Suppose $J \subseteq \bigcup_{j} I_{j}$. If R contains an infinite field or if at most two of the I_{j} are not prime, then J is contained in some I_{j} .

(If R is graded, J is gen. by homogeneous elements of degree >0, and <u>all</u> the T_j are prime, then it's enough to assume the homogeneous elts of J are in UT_j .)

Note: If I is not contained in any of a finite number of primes, the theorem says there is some $x \in I$ that "avoids" all the primes, hence "prime avoidance."

<u>Pf of theorem</u>: First suppose R contains an infinite field. Then J is a k-vector space, so if it's contained in the union of finitely many subspaces it must be contained in one of them.

Now, if at most two T_i are not prime, we do induction on n. If h=1, it's obvious.

If J is in any smaller union of the T_j , we're done by induction. Thus, assume it's in ho smaller union, so we can find, for each i, $x_i \in J$ s.t. $x_i \in I_i$ but

$$x_i \notin T_j, j \neq i$$

If n=2, then x_1+x_2 is not in I_1 or I_2 , which is a contradiction.

If n > 2, assyme I, is prime. Thus $x_1 + \frac{x_2 x_3 \dots x_n}{n^{o+in } I}$ is not in any Ij, again a contradiction.

This along with the previous theorem implies the following:

Cor: R Noetherian, M = O a finitely generated R-module. Let I = R be an ideal. Either I contains a nonzerodivisor on M or I annihilates an element of M.

Pf: If $I \notin \bigcup P$, then I contains a nonzero divisor on M. PEASSM Otherwise $I \subseteq P = Ann(x)$, some $x \in M$. \square

Now we work on the proof of the theorem in The previous section. First we show the following:

Prop: R a ring, $M \neq O$ an R-module. If $I \subset R$ is max'l among ideals of R that are annihilators of elements of M, then I is prime. In particular, if R is Noetherian, $AssM \neq \phi$.

Pf: Let a, b ∈ R s.t. ab ∈ I. Let
$$I = ann(x)$$
.
Suppose $b \notin I$. Then $bx \neq 0$, but $a bx = 0$.
 \Rightarrow (I, a) \subseteq ann (bx). By maximality, a ∈ I, so
I is prime. \Box

Note That this immediately proves part b.) of the Theorem from the previous section, which says

This also makes it easier to check whether or not elements of a module M are O. Recall that we showed previously that $x \in M=0 \iff x \mapsto 0$ in M_m for every max'l (or just prime) ideal $m \in R$.

But if R is Noetherian, we can restrict our attention to associated primes. More precisely:

Cor: let M be an R-module, R Noetherian. If $x \in M$, then $x = 0 \iff$ the image of x is 0 in each Mp for each of the maximal associated primes P of M.

Suppose $a \neq 0$. Then since R 18 Noetherian $\exists a prime P \in Ass M$ that is max'l among annihilators of elts containing Ann a. Thus, $\frac{\pi}{1} \neq 0$ in Mp. []

We can now observe how taking associated primes acts in short exact sequences.

Lemma: Let R be Noetherian, If

$$U \to M' \to M \to M'' \to 0$$

is a short exact sequence of R-modules, then Ass $M' \subseteq Ass M \subseteq (Ass M') \cup (Ass M')$.

Pf: The first containment is clear.

For the second, let
$$P \in Ass M \setminus Ass M'$$
. If $P = ann \pi$,
then $R \pi \cong {}^{R}P$.

For $\sqrt[n]{g} \in \mathbb{R}/p$, $a\overline{g} = 0 \iff a \in P$, since P is prime. Thus, every nonzero element of $\mathbb{R}\times also$ has annihilator P.

$$\Rightarrow R_{\pi} \cap M' = 0 \Rightarrow R_{\pi} \text{ is isomorphic to its image}$$

in $M'' \Rightarrow P \in As S M''. \Box$

To finish the proofs of part a.) of the Theorem in the previous section, we now just need the following:

Prop: If R is Noetherian and M is a finitely
generated R-module, then M has filtration
$$0 = M_0 \subseteq M_1 \subseteq \dots \subseteq M_n = M$$

w/ each $M_{i+i}/M_i \cong P_i$ for some prime ideal P_i .

Pf: Since R is Noetherian, if $M \neq 0$, AssM is nonempty. Let $P_i \in AssM$, so thure's a submodule $M_i \cong R/P_i$. Repeating this $W/M/M_i$, we get M_z . This process terminates since M is Noetherian.

We also need the following lemma, which essentially says that taking associated primes commutes w/ localization:

Lemma: If R is Noetherian and M an R-module, we have

Pf: Suppose QEASSM and QUU=Ø. Then Q=Ahn(x) for some REM.

Suppose
$$\frac{\alpha}{u} x = 0$$
 in $U^{-1}M$. Then $(Va)x = 0$ for $V \in U$.
 \implies $Va \in Q$. But $V \notin Q$, so $a \in Q$.
Thus, $QU^{-1}R \in Ass(U^{-1}M)$.

Conversely, suppose $P \in Ass(U^{T}M)$. Then $P = Q(U^{T}R)$ for some $Q \subseteq R$ prime not meeting U.

Say
$$P = A n m_{u^{-} k} \left(\frac{x}{u} \right) = A n n_{u^{-} l k} \left(x \right).$$

Then for each
$$q \in Q$$
, $\frac{q \times x}{l} = 0$, so there is up Q
s.b. $u_q q \times = 0$.

Since R is Noetherian, Q is finitely generated, say
$$Q = (q_1, ..., q_n)$$
. Set $U = Uq_1 Uq_2 ... Uq_n$.

Then $\forall q \in Q$, q(ux) = O. Thus, $Q \subseteq Ann_{R}(ux)$.

so we have:
$$Q \subseteq Ann_{R}(ux) \subseteq Ann_{u'r}(ux) \cap R \subseteq Ann_{u'r}(x) \cap R = P\cap R = Q$$

Now we conclude the proof of the theorem from last section. Recall part a.) of the theorem, again under the assumption that R is Noetherian and M≠O is f.g.: a.) AssM is finite and nonempty, each containing ann (M). It includes all primes minimal among those containing omn M.

Pf: For the finiteness statement, we give a filtration

$$U = M_0 \subseteq \dots \subseteq M_n = M$$
, where $M_{i+1}M_i \cong R_{P_i}$, P_i prime.
We prove by induction on n . For $n=1$, $M \cong R_{P_i}$

$$S_0 \forall x \in M, ax = 0 \iff a \in P_{i,j} = A_{SS_R}M = \{P_i\}$$

For
$$n > 1$$
, Ass $M \subseteq Ass M_{n-1} \cup Ass \left(\stackrel{R}{P_{n-1}} \right) \implies Ass M$ is finite.
finite by $\{ P_{n-1} \}$

Now we just need to show that if P is a prime ideal minimal over Ann M, PEAss M.

By the lemma,
$$Ass_{R_p} M_p = \{QR_p \mid Q \in Ass M and Q \subseteq P\}$$

But PR_p is the only prime in R_p containing Ann M and since $Ass_{R_p}M_p \neq \emptyset$, $P \in Ass M$. D